19 research outputs found

    Constructive Approximation and Learning by Greedy Algorithms

    Get PDF
    This thesis develops several kernel-based greedy algorithms for different machine learning problems and analyzes their theoretical and empirical properties. Greedy approaches have been extensively used in the past for tackling problems in combinatorial optimization where finding even a feasible solution can be a computationally hard problem (i.e., not solvable in polynomial time). A key feature of greedy algorithms is that a solution is constructed recursively from the smallest constituent parts. In each step of the constructive process a component is added to the partial solution from the previous step and, thus, the size of the optimization problem is reduced. The selected components are given by optimization problems that are simpler and easier to solve than the original problem. As such schemes are typically fast at constructing a solution they can be very effective on complex optimization problems where finding an optimal/good solution has a high computational cost. Moreover, greedy solutions are rather intuitive and the schemes themselves are simple to design and easy to implement. There is a large class of problems for which greedy schemes generate an optimal solution or a good approximation of the optimum. In the first part of the thesis, we develop two deterministic greedy algorithms for optimization problems in which a solution is given by a set of functions mapping an instance space to the space of reals. The first of the two approaches facilitates data understanding through interactive visualization by providing means for experts to incorporate their domain knowledge into otherwise static kernel principal component analysis. This is achieved by greedily constructing embedding directions that maximize the variance at data points (unexplained by the previously constructed embedding directions) while adhering to specified domain knowledge constraints. The second deterministic greedy approach is a supervised feature construction method capable of addressing the problem of kernel choice. The goal of the approach is to construct a feature representation for which a set of linear hypotheses is of sufficient capacity — large enough to contain a satisfactory solution to the considered problem and small enough to allow good generalization from a small number of training examples. The approach mimics functional gradient descent and constructs features by fitting squared error residuals. We show that the constructive process is consistent and provide conditions under which it converges to the optimal solution. In the second part of the thesis, we investigate two problems for which deterministic greedy schemes can fail to find an optimal solution or a good approximation of the optimum. This happens as a result of making a sequence of choices which take into account only the immediate reward without considering the consequences onto future decisions. To address this shortcoming of deterministic greedy schemes, we propose two efficient randomized greedy algorithms which are guaranteed to find effective solutions to the corresponding problems. In the first of the two approaches, we provide a mean to scale kernel methods to problems with millions of instances. An approach, frequently used in practice, for this type of problems is the Nyström method for low-rank approximation of kernel matrices. A crucial step in this method is the choice of landmarks which determine the quality of the approximation. We tackle this problem with a randomized greedy algorithm based on the K-means++ cluster seeding scheme and provide a theoretical and empirical study of its effectiveness. In the second problem for which a deterministic strategy can fail to find a good solution, the goal is to find a set of objects from a structured space that are likely to exhibit an unknown target property. This discrete optimization problem is of significant interest to cyclic discovery processes such as de novo drug design. We propose to address it with an adaptive Metropolis–Hastings approach that samples candidates from the posterior distribution of structures conditioned on them having the target property. The proposed constructive scheme defines a consistent random process and our empirical evaluation demonstrates its effectiveness across several different application domains

    Nyström method with Kernel K-means++ samples as landmarks

    Get PDF
    We investigate, theoretically and empirically, the effectiveness of kernel K-means++ samples as landmarks in the Nyström method for low-rank approximation of kernel matrices. Previous empirical studies (Zhang et al., 2008; Kumar et al.,2012) observe that the landmarks obtained using (kernel) K-means clustering define a good low-rank approximation of kernel matrices. However, the existing work does not provide a theoretical guarantee on the approximation error for this approach to landmark selection. We close this gap and provide the first bound on the approximation error of the Nystrom method with kernel K-means++ samples as landmarks. Moreover, for the frequently used Gaussian kernel we provide a theoretically sound motivation for performing Lloyd refinements of kernel K-means++ landmarks in the instance space. We substantiate our theoretical results empirically by comparing the approach to several state-of-the-art algorithms

    Greedy feature construction

    Get PDF
    We present an effective method for supervised feature construction. The main goal of the approach is to construct a feature representation for which a set of linear hypotheses is of sufficient capacity -- large enough to contain a satisfactory solution to the considered problem and small enough to allow good generalization from a small number of training examples. We achieve this goal with a greedy procedure that constructs features by empirically fitting squared error residuals. The proposed constructive procedure is consistent and can output a rich set of features. The effectiveness of the approach is evaluated empirically by fitting a linear ridge regression model in the constructed feature space and our empirical results indicate a superior performance of our approach over competing methods

    Greedy Feature Construction

    Get PDF
    Abstract We present an effective method for supervised feature construction. The main goal of the approach is to construct a feature representation for which a set of linear hypotheses is of sufficient capacity -large enough to contain a satisfactory solution to the considered problem and small enough to allow good generalization from a small number of training examples. We achieve this goal with a greedy procedure that constructs features by empirically fitting squared error residuals. The proposed constructive procedure is consistent and can output a rich set of features. The effectiveness of the approach is evaluated empirically by fitting a linear ridge regression model in the constructed feature space and our empirical results indicate a superior performance of our approach over competing methods

    A Deep 2D Convolutional Network for Waveform-Based Speech Recognition

    Get PDF

    Active search in intensionally specified structured spaces

    Get PDF
    We consider an active search problem in intensionally specified structured spaces. The ultimate goal in this setting is to discover structures from structurally different partitions of a fixed but unknown target class. An example of such a process is that of computer-aided de novo drug design. In the past 20 years several Monte Carlo search heuristics have been developed for this process. Motivated by these hand-crafted search heuristics, we devise a Metropolis--Hastings sampling scheme where the acceptance probability is given by a probabilistic surrogate of the target property, modeled with a max entropy conditional model. The surrogate model is updated in each iteration upon the evaluation of a selected structure. The proposed approach is consistent and the empirical evidence indicates that it achieves a large structural variety of discovered targets

    Learning in reproducing kernel Kreın spaces

    Get PDF
    We formulate a novel regularized risk minimization problem for learning in reproducing kernel Kreın spaces and show that the strong representer theorem applies to it. As a result of the latter, the learning problem can be expressed as the minimization of a quadratic form over a hypersphere of constant radius. We present an algorithm that can find a globally optimal solution to this nonconvex optimization problem in time cubic in the number of instances. Moreover, we derive the gradient of the solution with respect to its hyperparameters and, in this way, provide means for efficient hyperparameter tuning. The approach comes with a generalization bound expressed in terms of the Rademacher complexity of the corresponding hypothesis space. The major advantage over standard kernel methods is the ability to learn with various domain specific similarity measures for which positive definiteness does not hold or is difficult to establish. The approach is evaluated empirically using indefinite kernels defined on structured as well as vectorial data. The empirical results demonstrate a superior performance of our approach over the state-of-the-art baselines

    Deep Scattering Power Spectrum Features for Robust Speech Recognition

    Get PDF

    Learning in reproducing kernel Kreın spaces

    No full text
    We formulate a novel regularized risk minimization problem for learning in reproducing kernel Kreın spaces and show that the strong representer theorem applies to it. As a result of the latter, the learning problem can be expressed as the minimization of a quadratic form over a hypersphere of constant radius. We present an algorithm that can find a globally optimal solution to this nonconvex optimization problem in time cubic in the number of instances. Moreover, we derive the gradient of the solution with respect to its hyperparameters and, in this way, provide means for efficient hyperparameter tuning. The approach comes with a generalization bound expressed in terms of the Rademacher complexity of the corresponding hypothesis space. The major advantage over standard kernel methods is the ability to learn with various domain specific similarity measures for which positive definiteness does not hold or is difficult to establish. The approach is evaluated empirically using indefinite kernels defined on structured as well as vectorial data. The empirical results demonstrate a superior performance of our approach over the state-of-the-art baselines
    corecore